|
In mathematics, a V-ring is a ring ''R'' such that every simple ''R''-module is injective. The following three conditions are equivalent: #Every simple left (resp. right) ''R''-module is injective #The radical of every left (resp. right) ''R''-module is zero #Every left (resp. right) ideal of ''R'' is an intersection of maximal left (resp. right) ideals of ''R'' A commutative ring is a V-ring if and only if it is Von Neumann regular. ==References== 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「V-ring (ring theory)」の詳細全文を読む スポンサード リンク
|